
Using Motor Encoders in Autonomous 
OpModes 
When using FTC Blocks, encoders are one of the most useful tools for programming motors in 
Autonomous code. What makes them so hard is that the math needed to convert encoder 
counts into something that is useful for reliable, consistent robot movement can be difficult for 
beginning programmers. Additionally, using encoders requires an understanding of how to 
properly sequence commands, and how to use the tools within the Blocks editor to ensure 
those commands are completed. This lesson, while focused on using FTC Blocks to create robot 
movement, is more about the math principles needed to effectively use encoders, and how to 
leverage math within FTC Blocks to create code. Using this lesson, you will learn how to create a 
set of FTC Blocks functions that will let you build simple sets of movement instructions to move 
a robot forward and backwards, AND to rotate a robot. 

 

What is an encoder: 

Motor encoders are electronic counters that measure the rotation of a motor’s shaft. All an 
encoder does is count, either forward or backwards depending on the direction a motor is 
rotating. For every motor/ encoder combination, the encoder will count a specific number of 
counts for each motor shaft rotation. Since our team uses REV motors, I will provide the 
counts/ rotation for both the REV Ultraplanetary kit/ HD Hex motor, and the REV Core hex 
motor below: 

REV Ultraplanetary kit/ HD Hex motor: 28 counts per revolution (without any planetary gear 
stacks added) 

REV Core hex motor: 288 counts per revolution 

 

When is the encoder used in FTC Blocks: 

Motors in FTC blocks can be used in various modes. These modes are set using the 
set.motorname.Mode command as seen below. 

 

There are 4 different modes a motor can be set to: 

1) Stop and reset encoder- this mode stops the motor and resets the encoder position to a 
value of 0. This command is useful at the beginning of an OpMode to ensure that 
motors start from a known baseline condition and can also be used within an OpMode 
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to either restart your counting, or to help troubleshoot when you are experiencing 
unusual robot behaviors. 

2) Run Without Encoder- this mode ignores the encoder completely. In this mode, the 
set.motorname.Power command scales power between -1.0 and 1.0 (full reverse to full 
forward power) based on the maximum available power/ voltage the robot controller is 
able to provide. This mode is easy to use, and is commonly used in Teleop OpModes. 
The disadvantage of this mode is that as the robot’s battery voltage drops, the 
maximum speed/ available power drops as well, making motor speed less consistent 
than encoder driven modes. 

3) Run WITH encoder- This mode unlocks the counter functionality of the encoder, as well 
as the ability to set a velocity of a motor (in counts/ second), and a maximum velocity 
that the motor is allowed to operate at. In this mode, the set.motorname.Power 
command scales from -1.0 to 1.0 to the defined maximum motor velocity/ speed, and 
adjusts motor current while running to maintain that speed. This allows for more 
consistent control over robot speed, and allows a programmer to use the encoder 
counts as variable inputs to other commands. This mode additionally applies PIDF 
coefficients to the motor’s operation, which when properly defined and tuned can make 
motion changes smoother for better precision in robot movement. 

4) Run to Position- This is a special mode that allows a programmer to define a specific 
target encoder position for the motor to run to. This mode is ideal for Autonomous 
coding, as you can use math to define targets that allow you to precisely position your 
robot without direct control. The major disadvantage of this mode is that it is more 
complex than Run Without Encoder, and the math required to determine proper 
encoder targets can be difficult for younger or less experienced programmers to 
understand. This is the mode that our main example today will use to create a fully 
functional. 

 

Using Run to Position-  

In order to effectively use the Run to Position mode, you need four specific commands: 

1) You must first set a target position. This is the target (in encoder counts) that you want 
the motor to drive to. To do this, use the set.motorname.TargetPosition block as seen 
below. 
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When using this block, be sure to add a number block (or a reference to a variable) to 
the end. This is what defines your target encoder position. 

 

2) The next step is to place a set.motorname.Mode.Runmode.Run_to_Position block as 
seen below. Make sure you specify the correct motor.  

 

3) The next step is to set a power or velocity for the motor using either the 
set.motorname.Power or set.motorname.velocity command. In general, I’ve found that 
the most consistent results for beginners come with setting Power versus Velocity, 
though our main example program will use Velocity in order to take advantage of one of 
its special features (the ability to set a maximum rotational speed). To do this, place a 
set.motorname.Power block as seen below: 
 

 
When using this block, ensure you attach a number or variable block with a value of 
somewhere between -1.0 and 1.0, depending on which direction you want the motor to 
drive. Keep in mind that if your target position is larger than your current position, you 
MUST drive the motor forward to increase encoder counts, and the opposite is true 
when it comes to going in reverse. 
 

4) The final step while not required, is almost always the easiest way to ensure that you 
actually drive the motor all the way to the target. The problem many teams run into is 
that as soon as the set.motorname.Power command is executed, the program will 
automatically step to the next command. In many cases, the next set of commands will 
either end the program, or tell the motor to do something else entirely. To prevent this 
you can insert a while loop, that looks for 2 things, verify that the OpMode is still 
running, and verify that the motor is Busy. While a motor is running to a target, it 
considers itself busy. With the while loop in place, the program will check if that motor 
is still running to it’s target, over and over until the motor has stopped at it’s target. 
Generally, I place a telemetry block into this while loop that shows the encoder value for 
the motor as it moves to it’s target position. Here is an example of the while loop below: 
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This combination of blocks, when placed in an OpMode, will set a target encoder 
position, place the motor in the Run_to_Position mode, and drive the motor until the 
target position is met. Below is an example of an OpMode that will do just that. I’ve also 
added an additional set of telemetry blocks to provide feedback to the driver’s station 
after initially resetting the encoder, as well as a time delay at the end of the OpMode to 
give the operator time to verify that the motor has driven to the correct position. 
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Using Dual Motors: 

Generally speaking, if you want to drive a robot you need at least 2 motors, one on each side of 
the robot. To make it easier to use 2 motors at once, Blocks provides a set of ‘Dual’ motor 
commands, which let you set Mode, Target Position, Zero Power Behavior, and Power for both 
motors in a single block. As a note, the dual Power block also has a drop down that will allow 
you to set Velocity. Below are examples of the dual commands available in Blocks: 

 

 

Understanding and converting Gear Ratios in Blocks: 

We now know how to set a motor’s mode and rotate a motor until its encoder hits a target 
position, but most of the time our drive motors don’t have enough torque to move a robot 
without help. As a rule, teams use either a planetary gear motor (such as the REV ultraplanetary 
HD Hex) or a spur gear motor to create enough torque to move larger objects. While I’m not 
going to go deeply into gear theory in this lesson, it’s important to understand one significant 
concept. A gear assembly converts rotational speed into torque. In effect, a gear assembly 
torque at the output shaft by reducing speed. As an example, if I have a gear assembly with a 
10:1 ratio, the motor will spin 10 times for each rotation of the output shaft. This lowers our 
maximum shaft speed but allows for more force to be applied at the wheels. Below is a chart of 
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the various combinations of gear ratios that the REV ultraplanetary kit can obtain by stacking 
two the available gear stacks on the motor shaft (note that the empty blocks are there for a 
reason, you never want to place a higher gear ratio stack on top of a lower gear ratio stack, as 
this increases the chance of damaging either the gear stacks or the motor): 

 

If you notice that these values seem uneven, it’s because of the type of gearing that the REV 
motors use. More important is to understand how gear ratios impact encoders. Once again 
using the REV kit as an example, if each rotation of the motor results in 28 encoder counts, and 
assuming you have a 5:1 & an 4:1 gear stack on your kit, the total number of encoder counts for 
a single rotation of the output shaft (and correspondingly the wheel) is 28 X 18.1 (or 506.8), 
because the motor rotates 18.1 times for each single rotation of the output shaft. The reason I 
am using this particular combination of gear stacks is that this is a common gear ratio to use, as 
it provides adequate torque for drive motors in most situations while still providing enough 
speed to be useful.  

Unfortunately, Blocks doesn’t simply know what your gear ratio is, so you must create code to 
calculate how many counts will result in a single rotation of the wheel (this will be very 
important later!!!!!). The simple way to do this is to create a variable (in this case I’m calling it 
shaft counts per rev) and take it’s result as motor counts per revolution multiplied by the gear 
ratio. In our case we can do this in one of two ways: 

  

OR 
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In the second example, we create 2 new variables, encoder_counts_per_rev and 
motor_gear_reduction. The reason we might want to do it this way is if there is any possibility 
that we might change our hardware (different motor with a different encoder count, or 
changing our gear ratio), we only need to change the values of our two variables, which are 
labeled easily and are therefore easier to find in our code. One thing I prefer to do is to set up 
all of my variables when I initialize the robot, and to place all of them into a special function I 
call initVariables (or initialize variables). This puts every possible variable I may need to change 
in one place that is easy to find. For variables that I might need to change as a part of my robot 
build process, I can also place these variables as inputs to my initVariables function. This 
provides an even simpler way identify and tune my variables. Here is one example of the 
initVariables function that I am using for this lesson, as well as what it looks like on the Main 
code string: 

 

This function takes my inputs (counts per rev, wheel diameter, gear ratio, and wheelbase 
width), and uses those values to mathematically derive a number of other variables that I will 
need to drive the robot in an easy and consistent manner. 

Don’t worry if some of the 
calculations here don’t make 
sense. They will be explained 
later in this lesson 
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This is what that function looks like when I call it in my main OpMode code. If you notice, I can 
now very easily adjust all those inputs, making my code simple to adjust if I either change my 
hardware, or decide to use the same code for a different robot. 

 

Geometry concepts important to robotics (AKA Circle Math 101): 

While it’s certainly possible to simply identify the correct encoder counts needed to move your 
robot to a desired location through trial and error, it’s better from an engineering standpoint to 
use the tools available to you to get from point ‘A’ to point ‘B’ correctly the first time. To do 
this, you first need to understand some basic math terms and equations.  

 

If you take a circle, there are 3 important characteristics that matter to you for programming 
purposes.  

1) Radius- The radius of a circle is the distance from the center point to the outside edge.  
2) Diameter- the Diameter of a circle is the distance across the circle in a straight line going 

through the center point. The Diameter will always be twice the length of the radius. 
(D=2r) 

3) Circumference- The Circumference of a circle is the distance around the outer edge. 
Mathematically, you can find the circumference of any circle by multiplying pi 
(3.1415…..) by the diameter.  

 

These values are for a robot my 
team is working on, and will 
change depending on your 
robot’s construction and 
configuration 
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From this information, there are several math equations that are useful: 

𝜋 (𝑝𝑖) = 3.1415 … .. 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2 𝑋 𝑟𝑎𝑑𝑖𝑢𝑠 

𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝜋 𝑋 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

 There is one additional concept that you need to know about circles that will prove important 
to utilizing math to simplify robot programming. For any given circle, you can divide it into 
exactly 360 slices (think of it like a pizza with a LOT of slices). This is one of the core concepts of 
modern geometry.  
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Converting encoder counts into distance travelled: 

We now have all of the tools needed to create a run_to_position OpMode that can be told how 
‘far’ to go versus how ‘many encoder counts’. To do this, first we need some information about 
our robot. We will need the diameter of our wheels (can be found in the vendor data sheet for 
the specific wheels), our encoder counts per revolution (also available in the vendor data 
sheet), and the width of our wheelbase (the distance between the center of our two drive 
wheels). Once we have that information, we can now derive everything we need within our 
initVariables Function as follows: 

1) Assign a value to our wheel_diameter variable. 
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2) Calculate our wheel_circumference variable by multiplying the wheel_diameter by pi. 
This tells us how far the wheel will roll for one complete rotation (very important 
concept). 

3) Assign values to our motor_gear_reduction and encoder_counts_per_rev variables. 
4) The next step is tricky. We want to determine how many encoder counts will tick for 

each mm of travel (we are using mm because that is the unit of measure that the wheel 
diameter is in. Technically we can use any unit of measure we want, but all of the 
following steps would need to be modified.) To calculate this we will multiply our 
motor_gear_reduction and encoder_counts_per_rev together, then divide the result by 
our wheel circumference. The final result is then assigned to the 
encoder_counts_per_mm variable. 

5) Next, we will perform a conversion to allow us to use inches as out unit of travel (the 
play field is 12 feet to a side, and determining travel by mm doesn’t really make sense). 
To do this, we will multiply our encoder_counts_per_mm variable by 25.4(there are 25.4 
mm in an inch). The result is assigned to the encoder_counts_per_in variable. This is the 
variable that will be used for forward and backward movement. 

6) We will now begin calculating our variables needed for robot rotation. For this lesson, 
we will use the terms turning and rotating to mean different methods of changing a 
robot’s direction. Rotating is using both wheels turning in opposite directions to change 
the robot’s heading. Turning is using a single wheel moving either forward or backward 
to change the robot’s heading, while the other drive wheel remains stationary.  

 

This is a turn: 

 

 

 

 

This is a rotation:  
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Both turns and rotations can be useful, but for our sample code we will only set up 
rotation. To begin setting our robot up for rotation, we will assign a value to our 
wheelbase_mm variable that is equal to the width of the robot between the centerpoint 
of both drive wheels. 

7) We will now calculate our wheelbase circumference (imagine if your two drive wheels 
were moving in opposite directions, this is the circumference of the circle that would be 
created by their paths.) To do this (same as when calculating the wheel_circumference 
variable), we will multiply the wheelbase_mm variable by pi (3.1415…) and assign the 
result to the wheelbase_circumference variable. 

8) We will now calculate how many encoder counts are equivalent to our wheelbase 
circumference. Do this by multiplying our wheelbase_circumference variable with our 
encoder_counts_per_mm variable that we calculated in step 4. Assign the result to the 
wheelbase_circumference_counts variable. 

9) Our last step in setting up our initVar function is to determine how many counts of 
rotation are needed to rotate the robot by 1 degree. Remember that a full circle has 360 
degrees. This value is obtained by dividing our wheelbase_circumference_counts 
variable by 360, and assigning the result to the rotate_counts_per_degree variable. 

At the end of this process, you should have a function that looks something like this: 

(There might be some differences, depending on if you decide to use function inputs for some 
of your variable values, or if you choose to use different variable names.) 
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Setting up our motors: 

Our next task is to set up our motors. Once again, I am going to use a function for this, as I like 
to keep my main code as clean as possible. This function will be named Init Motor Setup. This 
function will be much less complicated than our Init Variables Function. 

To setup our motors we need to do several things. We need to assign our zero power behavior, 
reset our encoders to an initial value of 0, and we need to reverse the direction of one of our 
motors. The reason we reverse one of our motors is that in most robots, the 2 drive motors are 
pointed in opposite directions. Depending on the motor type and wiring, you may need to 
experiment to determine which motor needs to be reversed. In the example below, we have to 
reverse our Right side motor. 

The last line of code, takes an input variable, and assigns it’s value to a variable called 
auto_drive_speed. This program uses the motor’s velocity instead of setting the Power value. 
Either method will work, but in this case, I’m setting up a very specific value that I can change to 
adjust my robot’s maximum speed while keeping both the scaling of robot speed linear, AND 
minimizing the number of variables I need to change if I want to slow down (or speed up) my 
robot. If I later choose to change my program to use Power instead of velocity, the motor setup 
function will not need to be changed, but the value I put into my auto drive speed variable in 
the function input will. 

Here is my completed Init Motor Setup function: 
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Just a couple of notes on this sample: 

1) If you see the 4 blue blocks with writing in them, these are comment blocks used to 
describe what each command is intended to do. 

2) This function is also where you can place PIDF velocity and position coefficients, if you 
so choose. These are an advanced method of controlling motor behavior that can be 
used to smooth out changes in motor speed (this minimizes the chance of overshooting 
a target position or damaging a motor) that we will not discuss in this lesson. 

Creating a forward/ reverse drive function: 

Now that we have all of our variables initialized, and our motors set up, it is time to create a 
function that will actually move the robot. This function has been designed in a way that it will 
move the robot ANY number of inches either forward or backward, depending on the distance 
you input when you place the function call within your main code. This results in a much more 
versatile program, with less need for changes when a code improvement is identified and fewer 
code blocks to troubleshoot if you find a problem. 

 

If you remember earlier in this lesson, every run_to_position sequence has 3 required, and 1 
optional command blocks needed to work: 

1) A call to set a target position 

2) A command to set the mode on the motor(s) to run_to_position. 

3) A command to set either the power or the velocity of the motor 

4) (optional, but recommended) A While loop to pause program flow until the desired 
movement has been completed. 

I’ve also included a number of non-required commands like telemetry and a specific command 
block to ensure the motors have stopped prior to exiting the function. Let’s look at the sample 
function, and walk through how it works: 
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1) The function includes a single input parameter: Distance. This parameter is the distance 
(in inches) that you want the robot to move. A positive number will move the robot 
forward, while a negative number will move the robot backward. 

2) Two variable assignments for target_right and target_left. 

 
These variable assignments DO NOT set the target position, they only calculate a value, 
and then store that value in the two variables. We determine the value by first polling 
the encoder for the motorname.CurrentPosition value. This is the value of the encoder 
PRIOR TO moving the motor. We use this, instead of a value of 0 because for many 
OpModes, we will use multiple drive and rotate functions to perform movement, and 
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we can’t assume that the encoder will start at zero every time. While it might be 
possible to simply reset the encoders after every movement, it’s neither necessary nor 
efficient. We then multiply our desired movement distance with the value of the 
encoder_counts_per_in variable we calculated to give us a total number of counts by 
which we want to move. This value can be either positive OR negative, depending on 
which direction we want to go. 

We then add together our current position and the desired change in position, and then 
store the two values in our target variables. 

3) Our next 3 sets of blocks should be familiar.  
a. A dual set.TargetPosition block (with the value being the two calculated 

target_right and target_left variables we just calculated.  
b. A dual set.Mode.run_to_position block to set the motors into the correct mode. 
c. A dual set.Velocity block that starts the motors at the speed designated by the 

auto_drive_speed setting we defined when we set up the motors. 

 

 

4) Next we have our while loop that we run to prevent the motors from stopping prior to 
hitting their target positions.  
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If you look at the logic for the while loop, you can see that it’s looking for 3 conditions: 
The OpMode is still running (call opModelsActive), and if either of the two motors is 
busy. The important factor here is that the loop ensures that BOTH motors have hit their 
target positions (the motor is considered busy until it hits it’s target) prior to exiting the 
loop. This ensure that if you have a situation where one of the motors is running a bit 
slower than the other, you will still have even movement at the end of the loop. 

Within the while loop, I’ve placed additional encoder telemetry blocks, as well as a 
telemetry update. This lets the user verify that the motors are progressing to their 
target (useful for troubleshooting either code issues or hardware problems.) 

5) The last few blocks in our program aren’t required but have been put in in order to 
ensure the motor has stopped successfully, and to provide additional telemetry. 
Remember, once the run_to_position command sequence has completed, the motors 
should have stopped on their own, this final set.Velocity to 0, is just a safety feature in 
case there is a code issue. 

 

We have now completed our basic forward/ backward drive function.  

Rotating the robot: 

Now that we have a good template for forward and backward motion, we need to build a 
function that will allow us to rotate the robot (most of the time, the game doesn’t just want 
you moving in a straight line.) This function will be VERY similar to our normal drive function, 
but with a few key changes. For simplicity sake, we will only go into detail on the block that is 
different from the drive Function. 

1) Our first blocks (much like the drive function) assign values to our target variables for 
both motors.  
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This is the only block that is different between the drive and rotate functions, but those 
differences are important.  
a) The first change is that instead of multiplying a distance variable by our 

counts_per_in variable value, we will multiply our desired turn value (in degrees) by 
the rotate_counts_per_degree variable we calculated in our InitVariables function. 
This provides us with a number of counts that we need to rotate each wheel. 

b) The next change, if you look closely is that we have added an additional 
turn_multiplier factor, that adjust our number of counts we want to turn by. This 
isn’t a requirement, but I’ve discovered that depending on your hardware 
configuration (number of wheels, type and placement), sometimes a rotation will 
either consistently under or overshoot its target. This value is obtained from a 
manually set variable at the beginning of the program (you could set it in the 
initVariables function, but for some reason it wasn’t working for me), and is 
determined through trial and error, but will generally be between 0.8 and 1.2 if the 
rest of your programming is correct. This value is only needed if you ALWAYS 
undershoot or overshoot your turns!!!!! If your forward/ backward movement is 
inaccurate as well as your turns, or if you just sometimes overshoot or undershoot, 
this multiplier will not help you, check the rest of your code for errors!!!!! If you 
DO consistently under or overshoot your turns, experiment with different values for 
the turn_multiplier variable until your turns are consistently correct. 

c) Our final change is in how we apply our calculated movement against the 
motorname.CurrentPosition value. Remember, if I want to rotate I need to drive one 
motor forward and the other backward. This means that one of your values will be 
added to the current position (resulting in forward motor rotation), and the other 
subtracted (resulting in reverse motor rotation). Which motor to reverse will depend 
on how your robot is set up, and you may need to experiment to determine which 
motor to reverse in this block. 

2) The rest of the function is identical to the Drive function. 

Putting it all together in the main OpMode: 

Now that we have all of our needed functions written, we need to use them in our main 
OpMode. At this point let’s review the basic flow of an OpMode: 
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In this sample, I’ve removed everything except the basic code flow, including the while loop 
that Teleop code uses to iterate through inputs and outputs. In this basic flow you have two 
main periods, the Init phase, and the Run phase. The init phase code runs after the Init 
button is pressed on the driver’s station, and then the code stops when the code hits the 
call.waitForStop command block. Once the operator presses the start button on the driver’s 
station, the rest of the code in the program runs sequentially. 

Now let’s look at our completed program. For this example, I’m including 3 movements. A 
forward movement of 24 inches, a 90 degree right turn and another forward movement of 
24 inches. At the end of the program, I’ve placed a 10 second pause in order to give the 
operator an opportunity to verify that the encoders have moved correctly. 
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If you will notice, all our functions with inputs give you the opportunity to provide input 
values using number (or text, if the variable is a text type) blocks within the main line code. 
This makes is simple to make quick adjustments to your code or troubleshoot problems. For 
this example, I had my turn_multiplier variable set to 1.2 (as previously stated, this variable 
needs to be tuned to your application, so don’t assume YOU will need this value). 
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We now have a fully functional autonomous program that can be set by any user to move a 
robot to any location on the play field. The rest of this guide will be our full program, 
including all its relevant functions. 
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