
Using Motor Encoders in Autonomous
OpModes
When using FTC Blocks, encoders are one of the most useful tools for programming motors in
Autonomous code. What makes them so hard is that the math needed to convert encoder
counts into something that is useful for reliable, consistent robot movement can be difficult for
beginning programmers. Additionally, using encoders requires an understanding of how to
properly sequence commands, and how to use the tools within the Blocks editor to ensure
those commands are completed. This lesson, while focused on using FTC Blocks to create robot
movement, is more about the math principles needed to effectively use encoders, and how to
leverage math within FTC Blocks to create code. Using this lesson, you will learn how to create a
set of FTC Blocks functions that will let you build simple sets of movement instructions to move
a robot forward and backwards, AND to rotate a robot.

What is an encoder:

Motor encoders are electronic counters that measure the rotation of a motor’s shaft. All an
encoder does is count, either forward or backwards depending on the direction a motor is
rotating. For every motor/ encoder combination, the encoder will count a specific number of
counts for each motor shaft rotation. Since our team uses REV motors, I will provide the
counts/ rotation for both the REV Ultraplanetary kit/ HD Hex motor, and the REV Core hex
motor below:

REV Ultraplanetary kit/ HD Hex motor: 28 counts per revolution (without any planetary gear
stacks added)

REV Core hex motor: 288 counts per revolution

When is the encoder used in FTC Blocks:

Motors in FTC blocks can be used in various modes. These modes are set using the
set.motorname.Mode command as seen below.

There are 4 different modes a motor can be set to:

1) Stop and reset encoder- this mode stops the motor and resets the encoder position to a
value of 0. This command is useful at the beginning of an OpMode to ensure that
motors start from a known baseline condition and can also be used within an OpMode

Using Motor Encoders in Autonomous
OpModes

to either restart your counting, or to help troubleshoot when you are experiencing
unusual robot behaviors.

2) Run Without Encoder- this mode ignores the encoder completely. In this mode, the
set.motorname.Power command scales power between -1.0 and 1.0 (full reverse to full
forward power) based on the maximum available power/ voltage the robot controller is
able to provide. This mode is easy to use, and is commonly used in Teleop OpModes.
The disadvantage of this mode is that as the robot’s battery voltage drops, the
maximum speed/ available power drops as well, making motor speed less consistent
than encoder driven modes.

3) Run WITH encoder- This mode unlocks the counter functionality of the encoder, as well
as the ability to set a velocity of a motor (in counts/ second), and a maximum velocity
that the motor is allowed to operate at. In this mode, the set.motorname.Power
command scales from -1.0 to 1.0 to the defined maximum motor velocity/ speed, and
adjusts motor current while running to maintain that speed. This allows for more
consistent control over robot speed, and allows a programmer to use the encoder
counts as variable inputs to other commands. This mode additionally applies PIDF
coefficients to the motor’s operation, which when properly defined and tuned can make
motion changes smoother for better precision in robot movement.

4) Run to Position- This is a special mode that allows a programmer to define a specific
target encoder position for the motor to run to. This mode is ideal for Autonomous
coding, as you can use math to define targets that allow you to precisely position your
robot without direct control. The major disadvantage of this mode is that it is more
complex than Run Without Encoder, and the math required to determine proper
encoder targets can be difficult for younger or less experienced programmers to
understand. This is the mode that our main example today will use to create a fully
functional.

Using Run to Position-

In order to effectively use the Run to Position mode, you need four specific commands:

1) You must first set a target position. This is the target (in encoder counts) that you want
the motor to drive to. To do this, use the set.motorname.TargetPosition block as seen
below.

Using Motor Encoders in Autonomous
OpModes

When using this block, be sure to add a number block (or a reference to a variable) to
the end. This is what defines your target encoder position.

2) The next step is to place a set.motorname.Mode.Runmode.Run_to_Position block as
seen below. Make sure you specify the correct motor.

3) The next step is to set a power or velocity for the motor using either the
set.motorname.Power or set.motorname.velocity command. In general, I’ve found that
the most consistent results for beginners come with setting Power versus Velocity,
though our main example program will use Velocity in order to take advantage of one of
its special features (the ability to set a maximum rotational speed). To do this, place a
set.motorname.Power block as seen below:

When using this block, ensure you attach a number or variable block with a value of
somewhere between -1.0 and 1.0, depending on which direction you want the motor to
drive. Keep in mind that if your target position is larger than your current position, you
MUST drive the motor forward to increase encoder counts, and the opposite is true
when it comes to going in reverse.

4) The final step while not required, is almost always the easiest way to ensure that you
actually drive the motor all the way to the target. The problem many teams run into is
that as soon as the set.motorname.Power command is executed, the program will
automatically step to the next command. In many cases, the next set of commands will
either end the program, or tell the motor to do something else entirely. To prevent this
you can insert a while loop, that looks for 2 things, verify that the OpMode is still
running, and verify that the motor is Busy. While a motor is running to a target, it
considers itself busy. With the while loop in place, the program will check if that motor
is still running to it’s target, over and over until the motor has stopped at it’s target.
Generally, I place a telemetry block into this while loop that shows the encoder value for
the motor as it moves to it’s target position. Here is an example of the while loop below:

Using Motor Encoders in Autonomous
OpModes

This combination of blocks, when placed in an OpMode, will set a target encoder
position, place the motor in the Run_to_Position mode, and drive the motor until the
target position is met. Below is an example of an OpMode that will do just that. I’ve also
added an additional set of telemetry blocks to provide feedback to the driver’s station
after initially resetting the encoder, as well as a time delay at the end of the OpMode to
give the operator time to verify that the motor has driven to the correct position.

Using Motor Encoders in Autonomous
OpModes
Using Dual Motors:

Generally speaking, if you want to drive a robot you need at least 2 motors, one on each side of
the robot. To make it easier to use 2 motors at once, Blocks provides a set of ‘Dual’ motor
commands, which let you set Mode, Target Position, Zero Power Behavior, and Power for both
motors in a single block. As a note, the dual Power block also has a drop down that will allow
you to set Velocity. Below are examples of the dual commands available in Blocks:

Understanding and converting Gear Ratios in Blocks:

We now know how to set a motor’s mode and rotate a motor until its encoder hits a target
position, but most of the time our drive motors don’t have enough torque to move a robot
without help. As a rule, teams use either a planetary gear motor (such as the REV ultraplanetary
HD Hex) or a spur gear motor to create enough torque to move larger objects. While I’m not
going to go deeply into gear theory in this lesson, it’s important to understand one significant
concept. A gear assembly converts rotational speed into torque. In effect, a gear assembly
torque at the output shaft by reducing speed. As an example, if I have a gear assembly with a
10:1 ratio, the motor will spin 10 times for each rotation of the output shaft. This lowers our
maximum shaft speed but allows for more force to be applied at the wheels. Below is a chart of

Using Motor Encoders in Autonomous
OpModes
the various combinations of gear ratios that the REV ultraplanetary kit can obtain by stacking
two the available gear stacks on the motor shaft (note that the empty blocks are there for a
reason, you never want to place a higher gear ratio stack on top of a lower gear ratio stack, as
this increases the chance of damaging either the gear stacks or the motor):

If you notice that these values seem uneven, it’s because of the type of gearing that the REV
motors use. More important is to understand how gear ratios impact encoders. Once again
using the REV kit as an example, if each rotation of the motor results in 28 encoder counts, and
assuming you have a 5:1 & an 4:1 gear stack on your kit, the total number of encoder counts for
a single rotation of the output shaft (and correspondingly the wheel) is 28 X 18.1 (or 506.8),
because the motor rotates 18.1 times for each single rotation of the output shaft. The reason I
am using this particular combination of gear stacks is that this is a common gear ratio to use, as
it provides adequate torque for drive motors in most situations while still providing enough
speed to be useful.

Unfortunately, Blocks doesn’t simply know what your gear ratio is, so you must create code to
calculate how many counts will result in a single rotation of the wheel (this will be very
important later!!!!!). The simple way to do this is to create a variable (in this case I’m calling it
shaft counts per rev) and take it’s result as motor counts per revolution multiplied by the gear
ratio. In our case we can do this in one of two ways:

OR

Using Motor Encoders in Autonomous
OpModes

In the second example, we create 2 new variables, encoder_counts_per_rev and
motor_gear_reduction. The reason we might want to do it this way is if there is any possibility
that we might change our hardware (different motor with a different encoder count, or
changing our gear ratio), we only need to change the values of our two variables, which are
labeled easily and are therefore easier to find in our code. One thing I prefer to do is to set up
all of my variables when I initialize the robot, and to place all of them into a special function I
call initVariables (or initialize variables). This puts every possible variable I may need to change
in one place that is easy to find. For variables that I might need to change as a part of my robot
build process, I can also place these variables as inputs to my initVariables function. This
provides an even simpler way identify and tune my variables. Here is one example of the
initVariables function that I am using for this lesson, as well as what it looks like on the Main
code string:

This function takes my inputs (counts per rev, wheel diameter, gear ratio, and wheelbase
width), and uses those values to mathematically derive a number of other variables that I will
need to drive the robot in an easy and consistent manner.

Don’t worry if some of the
calculations here don’t make
sense. They will be explained
later in this lesson

Using Motor Encoders in Autonomous
OpModes

This is what that function looks like when I call it in my main OpMode code. If you notice, I can
now very easily adjust all those inputs, making my code simple to adjust if I either change my
hardware, or decide to use the same code for a different robot.

Geometry concepts important to robotics (AKA Circle Math 101):

While it’s certainly possible to simply identify the correct encoder counts needed to move your
robot to a desired location through trial and error, it’s better from an engineering standpoint to
use the tools available to you to get from point ‘A’ to point ‘B’ correctly the first time. To do
this, you first need to understand some basic math terms and equations.

If you take a circle, there are 3 important characteristics that matter to you for programming
purposes.

1) Radius- The radius of a circle is the distance from the center point to the outside edge.
2) Diameter- the Diameter of a circle is the distance across the circle in a straight line going

through the center point. The Diameter will always be twice the length of the radius.
(D=2r)

3) Circumference- The Circumference of a circle is the distance around the outer edge.
Mathematically, you can find the circumference of any circle by multiplying pi
(3.1415…..) by the diameter.

These values are for a robot my
team is working on, and will
change depending on your
robot’s construction and
configuration

Using Motor Encoders in Autonomous
OpModes

From this information, there are several math equations that are useful:

𝜋 (𝑝𝑖) = 3.1415 … ..

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2 𝑋 𝑟𝑎𝑑𝑖𝑢𝑠

𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝜋 𝑋 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

 There is one additional concept that you need to know about circles that will prove important
to utilizing math to simplify robot programming. For any given circle, you can divide it into
exactly 360 slices (think of it like a pizza with a LOT of slices). This is one of the core concepts of
modern geometry.

Using Motor Encoders in Autonomous
OpModes

Converting encoder counts into distance travelled:

We now have all of the tools needed to create a run_to_position OpMode that can be told how
‘far’ to go versus how ‘many encoder counts’. To do this, first we need some information about
our robot. We will need the diameter of our wheels (can be found in the vendor data sheet for
the specific wheels), our encoder counts per revolution (also available in the vendor data
sheet), and the width of our wheelbase (the distance between the center of our two drive
wheels). Once we have that information, we can now derive everything we need within our
initVariables Function as follows:

1) Assign a value to our wheel_diameter variable.

Using Motor Encoders in Autonomous
OpModes

2) Calculate our wheel_circumference variable by multiplying the wheel_diameter by pi.
This tells us how far the wheel will roll for one complete rotation (very important
concept).

3) Assign values to our motor_gear_reduction and encoder_counts_per_rev variables.
4) The next step is tricky. We want to determine how many encoder counts will tick for

each mm of travel (we are using mm because that is the unit of measure that the wheel
diameter is in. Technically we can use any unit of measure we want, but all of the
following steps would need to be modified.) To calculate this we will multiply our
motor_gear_reduction and encoder_counts_per_rev together, then divide the result by
our wheel circumference. The final result is then assigned to the
encoder_counts_per_mm variable.

5) Next, we will perform a conversion to allow us to use inches as out unit of travel (the
play field is 12 feet to a side, and determining travel by mm doesn’t really make sense).
To do this, we will multiply our encoder_counts_per_mm variable by 25.4(there are 25.4
mm in an inch). The result is assigned to the encoder_counts_per_in variable. This is the
variable that will be used for forward and backward movement.

6) We will now begin calculating our variables needed for robot rotation. For this lesson,
we will use the terms turning and rotating to mean different methods of changing a
robot’s direction. Rotating is using both wheels turning in opposite directions to change
the robot’s heading. Turning is using a single wheel moving either forward or backward
to change the robot’s heading, while the other drive wheel remains stationary.

This is a turn:

This is a rotation:

Using Motor Encoders in Autonomous
OpModes

Both turns and rotations can be useful, but for our sample code we will only set up
rotation. To begin setting our robot up for rotation, we will assign a value to our
wheelbase_mm variable that is equal to the width of the robot between the centerpoint
of both drive wheels.

7) We will now calculate our wheelbase circumference (imagine if your two drive wheels
were moving in opposite directions, this is the circumference of the circle that would be
created by their paths.) To do this (same as when calculating the wheel_circumference
variable), we will multiply the wheelbase_mm variable by pi (3.1415…) and assign the
result to the wheelbase_circumference variable.

8) We will now calculate how many encoder counts are equivalent to our wheelbase
circumference. Do this by multiplying our wheelbase_circumference variable with our
encoder_counts_per_mm variable that we calculated in step 4. Assign the result to the
wheelbase_circumference_counts variable.

9) Our last step in setting up our initVar function is to determine how many counts of
rotation are needed to rotate the robot by 1 degree. Remember that a full circle has 360
degrees. This value is obtained by dividing our wheelbase_circumference_counts
variable by 360, and assigning the result to the rotate_counts_per_degree variable.

At the end of this process, you should have a function that looks something like this:

(There might be some differences, depending on if you decide to use function inputs for some
of your variable values, or if you choose to use different variable names.)

Using Motor Encoders in Autonomous
OpModes
Setting up our motors:

Our next task is to set up our motors. Once again, I am going to use a function for this, as I like
to keep my main code as clean as possible. This function will be named Init Motor Setup. This
function will be much less complicated than our Init Variables Function.

To setup our motors we need to do several things. We need to assign our zero power behavior,
reset our encoders to an initial value of 0, and we need to reverse the direction of one of our
motors. The reason we reverse one of our motors is that in most robots, the 2 drive motors are
pointed in opposite directions. Depending on the motor type and wiring, you may need to
experiment to determine which motor needs to be reversed. In the example below, we have to
reverse our Right side motor.

The last line of code, takes an input variable, and assigns it’s value to a variable called
auto_drive_speed. This program uses the motor’s velocity instead of setting the Power value.
Either method will work, but in this case, I’m setting up a very specific value that I can change to
adjust my robot’s maximum speed while keeping both the scaling of robot speed linear, AND
minimizing the number of variables I need to change if I want to slow down (or speed up) my
robot. If I later choose to change my program to use Power instead of velocity, the motor setup
function will not need to be changed, but the value I put into my auto drive speed variable in
the function input will.

Here is my completed Init Motor Setup function:

Using Motor Encoders in Autonomous
OpModes
Just a couple of notes on this sample:

1) If you see the 4 blue blocks with writing in them, these are comment blocks used to
describe what each command is intended to do.

2) This function is also where you can place PIDF velocity and position coefficients, if you
so choose. These are an advanced method of controlling motor behavior that can be
used to smooth out changes in motor speed (this minimizes the chance of overshooting
a target position or damaging a motor) that we will not discuss in this lesson.

Creating a forward/ reverse drive function:

Now that we have all of our variables initialized, and our motors set up, it is time to create a
function that will actually move the robot. This function has been designed in a way that it will
move the robot ANY number of inches either forward or backward, depending on the distance
you input when you place the function call within your main code. This results in a much more
versatile program, with less need for changes when a code improvement is identified and fewer
code blocks to troubleshoot if you find a problem.

If you remember earlier in this lesson, every run_to_position sequence has 3 required, and 1
optional command blocks needed to work:

1) A call to set a target position

2) A command to set the mode on the motor(s) to run_to_position.

3) A command to set either the power or the velocity of the motor

4) (optional, but recommended) A While loop to pause program flow until the desired
movement has been completed.

I’ve also included a number of non-required commands like telemetry and a specific command
block to ensure the motors have stopped prior to exiting the function. Let’s look at the sample
function, and walk through how it works:

Using Motor Encoders in Autonomous
OpModes

1) The function includes a single input parameter: Distance. This parameter is the distance
(in inches) that you want the robot to move. A positive number will move the robot
forward, while a negative number will move the robot backward.

2) Two variable assignments for target_right and target_left.

These variable assignments DO NOT set the target position, they only calculate a value,
and then store that value in the two variables. We determine the value by first polling
the encoder for the motorname.CurrentPosition value. This is the value of the encoder
PRIOR TO moving the motor. We use this, instead of a value of 0 because for many
OpModes, we will use multiple drive and rotate functions to perform movement, and

Using Motor Encoders in Autonomous
OpModes

we can’t assume that the encoder will start at zero every time. While it might be
possible to simply reset the encoders after every movement, it’s neither necessary nor
efficient. We then multiply our desired movement distance with the value of the
encoder_counts_per_in variable we calculated to give us a total number of counts by
which we want to move. This value can be either positive OR negative, depending on
which direction we want to go.

We then add together our current position and the desired change in position, and then
store the two values in our target variables.

3) Our next 3 sets of blocks should be familiar.
a. A dual set.TargetPosition block (with the value being the two calculated

target_right and target_left variables we just calculated.
b. A dual set.Mode.run_to_position block to set the motors into the correct mode.
c. A dual set.Velocity block that starts the motors at the speed designated by the

auto_drive_speed setting we defined when we set up the motors.

4) Next we have our while loop that we run to prevent the motors from stopping prior to
hitting their target positions.

Using Motor Encoders in Autonomous
OpModes

If you look at the logic for the while loop, you can see that it’s looking for 3 conditions:
The OpMode is still running (call opModelsActive), and if either of the two motors is
busy. The important factor here is that the loop ensures that BOTH motors have hit their
target positions (the motor is considered busy until it hits it’s target) prior to exiting the
loop. This ensure that if you have a situation where one of the motors is running a bit
slower than the other, you will still have even movement at the end of the loop.

Within the while loop, I’ve placed additional encoder telemetry blocks, as well as a
telemetry update. This lets the user verify that the motors are progressing to their
target (useful for troubleshooting either code issues or hardware problems.)

5) The last few blocks in our program aren’t required but have been put in in order to
ensure the motor has stopped successfully, and to provide additional telemetry.
Remember, once the run_to_position command sequence has completed, the motors
should have stopped on their own, this final set.Velocity to 0, is just a safety feature in
case there is a code issue.

We have now completed our basic forward/ backward drive function.

Rotating the robot:

Now that we have a good template for forward and backward motion, we need to build a
function that will allow us to rotate the robot (most of the time, the game doesn’t just want
you moving in a straight line.) This function will be VERY similar to our normal drive function,
but with a few key changes. For simplicity sake, we will only go into detail on the block that is
different from the drive Function.

1) Our first blocks (much like the drive function) assign values to our target variables for
both motors.

Using Motor Encoders in Autonomous
OpModes

This is the only block that is different between the drive and rotate functions, but those
differences are important.
a) The first change is that instead of multiplying a distance variable by our

counts_per_in variable value, we will multiply our desired turn value (in degrees) by
the rotate_counts_per_degree variable we calculated in our InitVariables function.
This provides us with a number of counts that we need to rotate each wheel.

b) The next change, if you look closely is that we have added an additional
turn_multiplier factor, that adjust our number of counts we want to turn by. This
isn’t a requirement, but I’ve discovered that depending on your hardware
configuration (number of wheels, type and placement), sometimes a rotation will
either consistently under or overshoot its target. This value is obtained from a
manually set variable at the beginning of the program (you could set it in the
initVariables function, but for some reason it wasn’t working for me), and is
determined through trial and error, but will generally be between 0.8 and 1.2 if the
rest of your programming is correct. This value is only needed if you ALWAYS
undershoot or overshoot your turns!!!!! If your forward/ backward movement is
inaccurate as well as your turns, or if you just sometimes overshoot or undershoot,
this multiplier will not help you, check the rest of your code for errors!!!!! If you
DO consistently under or overshoot your turns, experiment with different values for
the turn_multiplier variable until your turns are consistently correct.

c) Our final change is in how we apply our calculated movement against the
motorname.CurrentPosition value. Remember, if I want to rotate I need to drive one
motor forward and the other backward. This means that one of your values will be
added to the current position (resulting in forward motor rotation), and the other
subtracted (resulting in reverse motor rotation). Which motor to reverse will depend
on how your robot is set up, and you may need to experiment to determine which
motor to reverse in this block.

2) The rest of the function is identical to the Drive function.

Putting it all together in the main OpMode:

Now that we have all of our needed functions written, we need to use them in our main
OpMode. At this point let’s review the basic flow of an OpMode:

Using Motor Encoders in Autonomous
OpModes

In this sample, I’ve removed everything except the basic code flow, including the while loop
that Teleop code uses to iterate through inputs and outputs. In this basic flow you have two
main periods, the Init phase, and the Run phase. The init phase code runs after the Init
button is pressed on the driver’s station, and then the code stops when the code hits the
call.waitForStop command block. Once the operator presses the start button on the driver’s
station, the rest of the code in the program runs sequentially.

Now let’s look at our completed program. For this example, I’m including 3 movements. A
forward movement of 24 inches, a 90 degree right turn and another forward movement of
24 inches. At the end of the program, I’ve placed a 10 second pause in order to give the
operator an opportunity to verify that the encoders have moved correctly.

Using Motor Encoders in Autonomous
OpModes

If you will notice, all our functions with inputs give you the opportunity to provide input
values using number (or text, if the variable is a text type) blocks within the main line code.
This makes is simple to make quick adjustments to your code or troubleshoot problems. For
this example, I had my turn_multiplier variable set to 1.2 (as previously stated, this variable
needs to be tuned to your application, so don’t assume YOU will need this value).

Using Motor Encoders in Autonomous
OpModes

We now have a fully functional autonomous program that can be set by any user to move a
robot to any location on the play field. The rest of this guide will be our full program,
including all its relevant functions.

Using Motor Encoders in Autonomous
OpModes

Using Motor Encoders in Autonomous
OpModes

Using Motor Encoders in Autonomous
OpModes

